O2O Marketing Model and Mechanism of Eco-Agricultural Products Planting Bases in Developed Regions and Undeveloped Regions

Jie Chen
Jiaxing Vocational Technical College, Jiaxing314006, Zhejiang, China

Abstract
In recent years, the local governments in underdeveloped regions want to utilize their excellent ecological environment to develop eco-agriculture industry to achieve accurate poverty alleviation, and it has reached a certain scale. However, underdeveloped regions face challenges such as lack of planting technology, unsound marketing channels, low brand level and credibility, the yield of eco-agricultural products is poor, and the eco-agricultural products sales have stagnated. Therefore, the policy of utilizing eco-agriculture to achieve accurate poverty alleviation is seriously hampered. This paper investigates and analyzes the current development of eco-agricultural products in underdeveloped regions and developed regions, finds out the respective regions’ main problems, and proposes O2O (Online to Offline) marketing model and mechanism that link the agricultural product wholesale markets in developed regions with the agricultural product cultivation bases in underdeveloped regions. The proposed marketing model and mechanism are suited to achieve accurate poverty alleviation in underdeveloped regions and can be used as reference for relevant government officials and researchers.

Key words: Eco-agricultural Products, Planting Bases, O2O Marketing Model and Mechanism

1. Introduction
When Chinese President Xi visited Xiangxi City in Hunan Province in January 2013, he first proposed “accurate poverty alleviation”: poverty alleviation requires seeking truth from the facts and adapting to local conditions [1]. Following this, the Central Office of the Communist Party of China issued a circular named "Opinions on Innovating Mechanisms for Steadily Promoting Rural Poverty Alleviation and Development", and the State Council issued "Circular on Establishing the Implementation Plan for Accurate Poverty Alleviation Mechanisms", which provides detailed specifications on the top-level design, overall layout and working mechanism of accurate poverty alleviation. A comprehensive development of Xi’s idea of accurate poverty alleviation has started [2].

In the past two years, local governments in underdeveloped regions want to utilize their excellent ecological environment to vigorously develop eco-agriculture industry to achieve accurate poverty alleviation. At present, they have reached a certain scale. However, due to lack of planting technology, unsound distribution channels, relatively low brand level and credibility, underdeveloped regions have low yield and stagnated sales on eco-agricultural products, which has severely hindered the progress of utilizing eco-agriculture to achieve accurate poverty alleviation. On the other hand, due to the rapid development of industries in developed regions along the coast over the past 30 years, air, water, and soil conditions there have been severely degraded. In addition, the cost of new land and land-use change as well as the cost of labor are not suitable for large-scale development of eco-agriculture in developed regions. In contrast, with the accumulation of high income groups in developed regions, the demand for high-end, reliable eco-agricultural products is increasing day by day.

This paper investigates and analyzes the current development of eco-agricultural products in the less developed Sangzhi County, Hunan Province and the more developed Jiaxing City, Zhejiang Province, finds out each region’s main problems, proposes O2O marketing model and mechanism that link the agricultural product wholesale markets in developed regions with the agricultural product cultivation bases in undeveloped regions. This paper explores how Sangzhi and Jiaxing can overcome their respective disadvantages and use “Internet+” technologies to jointly develop the eco-agricultural industrial chain and achieve accurate poverty alleviation. This paper can be used as reference for relevant government officials and researchers.

2. Underdeveloped Region — Ecological Agricultural Development Status of Sangzhi County, Hunan Province and Analysis of its Strengths and Weaknesses

2.1. Current Eco-Agricultural Development Status of Sangzhi County, Hunan Province
Since 2016, the Sangzhi County Government and County Communist Party Committee have listed eco-agriculture as one of the top five industries in the county. After the debut of the “523” action plan for the upgrade and improvement of the eco-agricultural industry in Sangzhi, the eco-agriculture has been further categorized as one of the two key agricultural industries. By 2017, the total area of eco-agricultural land in the whole county has reached 18,600 acres, achieving eco-agricultural products value of 55 million US dollars throughout the year. Five provincial and municipal leading enterprises have been bred, namely Yongqiang Agriculture, Lishui Vegetable, Daxiangxi Konjac, Jiutian Biotechnology, and Sangzhi County Fortune. In particular, the county has established three major regional vegetable bases, namely, high altitude organic vegetable base (12,700 acres), processed organic vegetable base (4,800 acres), and urban organic vegetable base (3,950 acres), which have basically achieved scale, regionalization, and standardization. At present, Sangzhi has been listed as one of the 230 tier 1 organic vegetable base counties in China.

2.2. The Strengths of Sangzhi in Developing Eco-Agriculture

Sangzhi is located in the middle of Wuling Mountains and has a subtropical monsoon wet climate. The annual sunshine hours are between 880 and 1340 hours. The average maximum and minimum temperature is 28.6°C and 6°C, respectively, with the highest and lowest temperature being 39.5°C and -4°C, respectively. The annual effective accumulated temperature is $(\geq 10 \, ^\circ \text{C})$ 5370 °C. Each year, Sangzhi has more than 270 frost free days, 1400-2300mm rainfall. The annual average relative humidity is 79%. Overall, Sangzhi has a mild climate, long frost-free period, high effective accumulated temperature, and abundant rainfall. It is suitable for long term cultivation of organic vegetables with high land utilization rate and high multiple-crop index [3].

Sangzhi is located near the border of Hunan, Hubei, Henan, and Hebei. It has various types of landforms and an altitude gradient. The southern areas with elevations of 500 meters or lower are hills and river valley plains, which are suitable for the cultivation of organic thermophilic vegetables; the central areas with elevations between 500 meters and 800 meters are suitable for the cultivation of various summer and autumn organic vegetables; the northeastern and northwestern areas with elevations of 800 meters or above have distinct cool climate, and are suitable for the cultivation of organic psychrophilic vegetables. As a result, the steep altitude gradient along with the distinct climate in local areas creates this unique ladder planting environment in Sangzhi[4].

Sangzhi resides in Selenium rich zone inside the nationwide renowned Wuling Mountains, which is the ideal cultivation area for natural healthy vegetables. It is the only region in Hunan Province that no heavy metals have been detected, and thus it offers organic vegetables with superior quality. There are six categories of soil in the county: yellow brown loam soil, yellow loam soil, black lime soil, purple soil, red lime soil and red loam soil. Among them, yellow brown loam soil is most predominant, and it has a moderate pH level. Sangzhi has 97,600 acres of existing cultivated area, including 63,400 acres of paddy field, 43,000 acres of dry land, and over 58,000 acres of land that is suitable for organic vegetable cultivation.

Sangzhi is only 55 kilometers away from both Zhangjiagai Railway Station and Zhangjiajie Hehua Airport. Grade 2 Zhang-Sang Motorway, Grade 3 motorways such as Sang-Yong, Sang-Long, Sang-He as well as Sang-Ci Motorway are all completed and open to traffic. Zhang Sang Expressway and Qian-Zhang-Chang High Speed Railway has started construction in 2014 and will be officially open to traffic in 2019. At present, the county has a total road distance of 3,521 kilometers, including 320 kilometers of provincial highways, 1,765 kilometers of rural roads and 1,526 kilometers of village roads. They have formed vertical and horizontal transportation networks, which enable convenient and fast product transportation.

2.3. Sangzhi’s Bottleneck of Developing Eco-Agriculture

Sangzhi has insufficient funds and its infrastructure has fallen behind. Its fiscal revenue in 2017 is only 103 million US dollars, and as a result, very few funds can be invested in eco-agriculture development. Currently, the operation of government departments at all levels in Sangzhi is mainly funded by national and provincial treasury. In recent years, national government has increased poverty alleviation efforts in poverty-stricken counties. The governments at all levels in Sangzhi have used the national poverty alleviation funds to accelerate the construction of eco-agricultural product cultivation bases. Since Sangzhi is one of the 100 most impoverished counties in China, the management and infrastructure construction in all aspects are still relatively behind, which makes it difficult to attract foreign capital. Therefore, severe shortage of funds has become the main bottleneck for developing eco-agriculture in Sangzhi.
In recent years, several large eco-agricultural enterprises in Sangzhi, such as Yongqiang, Jiutian, Lvfeng, and Yongfeng, etc., have not entirely focused on eco-agriculture business. With their efforts being sidetracked to other industries, their eco-agriculture is small in scale and weak in market competitiveness, and thus has not yet reached economies of scale. In addition, these enterprises are lack of brand awareness, and therefore are not getting brand benefits. Meanwhile, several larger enterprises from outside Sangzhi have been brought in to invest in eco-agriculture. However, their motives are dubious, and they probably just take advantages of the poverty alleviation policy in Sangzhi to help develop their original business [5]. As a result, the key for Sangzhi has to be helping Sangzhi's local eco-agricultural enterprises grow bigger and stronger, and driving the joint development of urban and rural residents.

Sangzhi is one of the 100 most impoverished counties in China. The local governments and the residents are lack of innovative capability in eco-agricultural development. Moreover, there is no insurance mechanism and system for eco-agricultural innovations. Even if some agricultural cooperatives have made some achievements, it is difficult for them to sprout and proliferate given the fact that various success elements are missing. In addition, it is also difficult to widely adopt the new materials, new technologies and new models that are applicable to the development of regional eco-agriculture. Lastly, the innovation mechanism within the system is not active, and the traditional development model is difficult to be replaced. Even obstacles have been intentionally set to hinder the adoption of new development models [6].

3. Developed Region — Eco-Agricultural Development Status of Jiaxing City, Zhejiang Province and Analysis of its Strengths and Weaknesses

3.1. Current Eco-Agricultural Development Status of Jiaxing City, Zhejiang

During the "Twelfth Five-Year" period and the past few years of the "Thirteenth Five-Year", Jiaxing's agriculture has made great achievements, and the agricultural economy has maintained a sustained and healthy development pace [7]. However, in the new norm of rapid industrialization and urbanization, comprehensive deployment of the "LiangFuLiangMei" strategy, continuous integration of agricultural modernization and informatization, continuous escalation of consumer expenditure and constant acceleration of e-commerce exchanges, Jiaxing's agriculture is at the critical point for upgrade and transformation. Here lies both opportunities and challenges. Therefore, we should start from the current status of modern agricultural development in Jiaxing, then make a detailed analysis by comparing the external environment and internal conditions. On the basis of clarified resource endowments and binding conditions, we should identify the strengths, weaknesses, opportunities and threats for the development of modern agriculture in Jiaxing, and then through the optimization of strategic choices, comprehensively enhance the core competitiveness, accelerate the development, and gradually realize the "Beautiful Countryside" rural revitalization strategy [10].

3.2. The Strengths of Jiaxing in Developing Eco-Agriculture

During Jiaxing is located at the junction of three provinces (municipality), Shanghai, Jiangsu, and Zhejiang, which is the core area of the Yangtze River Delta Metropolitan Region. Residing at the most economically active Yangtze River Delta and the center of the eastern coastal economic zone, Jiaxing has its obvious geographical advantages. It is close to the largest consumer market for eco-agriculture products in the Yangtze River Delta region, which has a dense population, a high consumption level and strong purchasing power. In addition, benefiting from Jiaxing's unique location, it has convenient land and water transport, with expressways, railways and rivers extending in all directions as well as a port that can go overseas. It offers convenient collection and distribution of agricultural products, low cost logistics and convenient land and water transport for eco-agriculture products to export. Jiaxing's agricultural products have largely penetrated into Shanghai, Hangzhou, Suzhou, Ningbo, Nanjing and other surrounding cities. For instance, the amount of eco-agricultural products exporting to Shanghai has been ramping up steadily over the years. As of today, 20% of Jiaxing's eco-agricultural products make their way to Shanghai.
In recent years, with the rise of the concept of healthy consumption and the improvement of life quality, the demand for middle and high grade eco-agricultural products has grown rapidly, and the market has great potential. However, due to limitations on production scale, operating conditions, management capability, resources and environment, social integrity and monitoring methods, the quality and safety of agricultural products have become an important concern to the society. The production and supply of quality and safe agricultural products have not yet been able to meet the market demand, which makes high quality guaranteed eco-agricultural products more favorable by the market. The eco-agricultural production is one of the effective ways to solve the food safety problem and meets the needs of the consumers. By using the corporate resources to bring the societal resources into play, we can promote the development of ecological and green agriculture and provide the market with more quality guaranteed eco-agricultural products. This will in turn further promote ecological consumption and healthy life styles and increase the competitiveness and impact of agricultural products from Jiaxing.

3.3. Jiaxing's Bottleneck of Developing Eco-Agriculture

Du With the improvement of the life quality of urban and rural residents, the change of consumption concepts and the rise of consumption level, nutrition, health and safety will become the focus of the consumers. This will impose new and higher requirements on agricultural production. On the other hand, with the rapid advancement of industrialization and urbanization, the impact of water and air pollution on agricultural production has been increasing. In the past few years, 90.33% of surface water resource in Jiaxing is in the Grade 5 or below quality categories. In spite of the improvement in water quality through governance in recent years, the water standards required by eco-agriculture have not yet been met. As a result, the pollution of agricultural water resource and poor agricultural ecological environment have seriously affected the quality of eco-agricultural products in Jiaxing. The development of eco-agriculture is facing more severe resource and environmental constraints. In addition, arable land resources are increasingly scarce, while industrialization and urbanization require 4,900 acres of land each year. Moreover, the market has poor reverse supervision and traceability, resulting in insufficient standard production power, overextended operation and management, all of which jeopardize the quality and safety of agricultural products.

The general increase in the prices of eco-agricultural products, the reduction of agricultural taxes along with the increase of fiscal subsidies for agriculture have reduced the willingness of farmers to transfer land to others. This has increased the difficulty and the cost of concentrated contiguous land transfer. In addition, agricultural production also faces labor shortage. With the young rural laborers flowing to secondary and tertiary industries as well as the development of large scale and concentrated agricultural operation, agricultural production and employment are increasingly strained and labor cost has increased substantially. Moreover, with the rapid rise in urban land prices, the opportunity cost of suburban agricultural land is increasing, which eventually leads to higher rent for agricultural land.

Firstly, Jiaxing is located in a developed economic area with a large population but relatively little land. In 2017, the per capita cultivated land area in Jiaxing was only 0.05 hectares, and the per capita cultivated land area for agricultural labor was 0.1 hectares, which was 25% of the nation's 0.4 hectares. As the integration of urban and rural areas progresses, the reduction in the per capita agricultural land is further aggravated, and the contention between rising population and falling per capita cultivated land is even more acute. Secondly, after many years of progress in rural land transfer program, Jiaxing currently has 16,400 acres of land transferred through various forms, accounting for about 40% of the household contracted area. The land transfer has entered into a bottleneck period, mainly manifested as the intense contention between farmer households and business entities in the land transfer process. Thirdly, the difficulty of land transfer has increased, which has caused land shortage for the development of ecologically efficient agriculture in many areas. This has made large scale agricultural development more difficult and has also contributed to the increase in land transfer cost. Land transfer prices have been increasing steadily year by year, from the past 375 to 470 US dollars per acre to the recent 940 to 1700 US dollars per acre. The increase in the farm land transfer cost has reduced the agricultural business operators' incentive.

4. Constructing O2O Linked Marketing Model and Mechanism for Eco-Agricultural Products in Underdeveloped and Developed Regions

At present, there are many eco-agricultural product bases and distributors in underdeveloped regions in China, but few of them are profitable. The main reason is that underdeveloped regions still rely on layers of intermediate distributors to sell eco-agricultural products. The excessive layers of intermediate distributors make it difficult for the producers to understand the types and quantity of products that the market demands. Not being able to estimate the market demand leads to many problems, such as unreasonable planting structure of eco-agricultural products, blind planting, weak radial sales, unstable internal relationships within marketing channels, inefficient marketing channels, out of date marketing technology and trading methods, high sales costs, and incomplete market information. These problems have limited the scale of eco-agricultural product cultivation bases in underdeveloped regions and have made it difficult to establish brands and credibility in the market.

Meanwhile, the agricultural product wholesale market of Jiaxing, one of the developed regions, is currently undergoing accelerated transformation and upgrade. The demand for high quality eco-agricultural products has increased at a rate of 30%. According to the theoretical framework of the Integrated Marketing Communications (IMC), our research group realized the "Internet+ Modern Eco-Agricultural O2O Platform" through secondary development of Tencent's "Vikduo O2O Platform" and an O2O joint development trust mechanism through "mobile Internet", "private cloud", "Internet of Things", "big data" and other technologies. Both of them link Jiaxing's agricultural product wholesale market to the eco-agricultural product cultivation bases in underdeveloped regions. The cultivation bases can take advantages of their excellent ecological environment, low labor cost and the national accurate poverty alleviation funds to produce eco-agricultural products in large scale; in order to expand the sales of eco-agricultural products, Jiaxing's agricultural product wholesale market can organize distributors to focus on developing experience centers, chain stores, and service centers, giving consumers accessible ways to try eco-agricultural products. Through the activity code and the source tracing code of “Internet + Modern Eco-agricultural O2O Platform”, mobile phone and other mobile devices can be used to connect Jiaxing's agricultural products wholesale market with the cultivation bases in underdeveloped regions. With the data collected from the distributors, chain stores, and convenient stores in the wholesale market, "big data" method can be utilized for timely analysis, and the generated forecasting data can then be transmitted to the enterprises in the corresponding cultivation bases in underdeveloped regions.

![Figure 1. O2O linked business flow chart of eco-agricultural products between developed and underdeveloped.](image-url)
These enterprises can then make cultivation plan adjustments accordingly based on the data provided by the platform. By using the O2O linked marketing model, we solve a number of problems for the cultivation bases, including blind planting, poor marketing information circulation and transparency, low credibility, and large information gaps between suppliers in cultivation bases and eco-agricultural product consumers. The platform offers the online and offline transaction modes such as “Online Booking”, “Special Trading Session”, “Bill of Lading”, “Precise Settlement” between the distributors in the wholesale market and the cultivation bases. The platform also provides ways for transaction management, transaction control, logistics tracking, quality online tracing, fund management, so as to help optimizing eco-agricultural product cultivation, promoting brands, optimizing sales channels, structures and terminals as well as logistics distribution in underdeveloped regions, and ultimately achieve the quality assurance system of eco-agricultural products, efficient and safe channel operation system, and large scale operation goals that satisfy customers. By forming an alliance of ecological industries in developed regions and underdeveloped regions, integrating and sharing resources, bringing together ecology, health and catering, we can truly realize the joint development mechanism of the first, second and third industrial chains of eco-agriculture in developed regions and underdeveloped regions. The flow chart is shown in Figure 1.

4.2. Achieving O2O Joint Development Mechanism Between Jiaxing Agricultural Product Wholesale Market and the Ecological Agricultural Product Cultivation Base in Underdeveloped Regions Through the "Internet + Modern Ecological Agricultural O2O Platform"

By secondary development of Tencent’s "Vikduo O2O Platform", the O2O joint development mechanism between Jiaxing’s agricultural product wholesale market and the ecological agricultural product cultivation bases in underdeveloped regions is realized based on the "Internet+ Modern Eco-Agricultural O2O Platform". Through this platform, devices such as mobile phones can be used to collect sales data from the distributors, chain stores, and convenient stores. "Big data" method can be utilized for timely analysis, and the generated forecasting data will be transmitted to the enterprises in the corresponding cultivation bases in underdeveloped regions. In addition, the cultivation bases can timely inform the eco-products growing progress to the distributors in Jiaxing’s agricultural wholesale market, allowing early start of the pre-sale and simplification of the marketing process. Overall, this solves problems including blind planting, poor marketing information circulation and transparency, low credibility, and large information gaps between the suppliers in cultivation bases and consumers. By using "mobile Internet", "private cloud", "Internet of Things", "big data" and other technologies, an O2O joint development trust mechanism between Jiaxing’s agricultural product wholesale market and the ecological agricultural product cultivation bases in underdeveloped regions is constructed. By bringing together ecology, health and catering, we can truly realize the joint development mechanism of the first, second and third industrial chains of eco-agriculture in developed regions and underdeveloped regions. This is demonstrated in Figure 2 below.

![Figure 2](image-url) Structure diagram of “Internet+” modern eco-agricultural O2O platform based on “Vikduo”

4.3. Feasibility Analysis of O2O Market Model and Mechanism Linking Developed Region (Jiaxing) and Underdeveloped Regions’ Eco-Agriculture Cultivation Bases by Using Profit and Cost Relationship Model
There are approximately 19 cost factors for either developed region (Jiaxing) or underdeveloped regions to develop eco-agriculture on their own. They are listed in Table 1. Table 2 shows the annotations for the developed and underdeveloped regions used in the analysis.

Table 1. List of cost factors

<table>
<thead>
<tr>
<th>Cost Factor Number j</th>
<th>Name of Cost Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Land Cost</td>
</tr>
<tr>
<td>2</td>
<td>Land Transformation Cost</td>
</tr>
<tr>
<td>3</td>
<td>Irrigation Water Process Cost</td>
</tr>
<tr>
<td>4</td>
<td>Air Process Cost</td>
</tr>
<tr>
<td>5</td>
<td>Planting Material Cost</td>
</tr>
<tr>
<td>6</td>
<td>Planting Labor Cost</td>
</tr>
<tr>
<td>7</td>
<td>Ecological Fertilizer Cost</td>
</tr>
<tr>
<td>8</td>
<td>Pest Control Cost</td>
</tr>
<tr>
<td>9</td>
<td>Production Process Cost</td>
</tr>
<tr>
<td>10</td>
<td>Logistics Cost</td>
</tr>
<tr>
<td>11</td>
<td>Customer Acquiring Cost</td>
</tr>
<tr>
<td>12</td>
<td>Customer Trust Cost</td>
</tr>
<tr>
<td>13</td>
<td>Channel Establishment Cost</td>
</tr>
<tr>
<td>14</td>
<td>Channel Maintenance Cost</td>
</tr>
<tr>
<td>15</td>
<td>Experience Center Cost</td>
</tr>
<tr>
<td>16</td>
<td>Technology Cost</td>
</tr>
<tr>
<td>17</td>
<td>Sales Cost</td>
</tr>
<tr>
<td>18</td>
<td>Management Cost</td>
</tr>
<tr>
<td>19</td>
<td>Cost of Funds</td>
</tr>
</tbody>
</table>

Table 2. List of cost factors

<table>
<thead>
<tr>
<th>Region Number i</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Developed Region</td>
</tr>
<tr>
<td>2</td>
<td>Underdeveloped Region</td>
</tr>
</tbody>
</table>

Let c_{ij} be the unit cost of region i’s jth factor and let a_{i} be the region i’s eco-agricultural yield per acre, the total cost per acre to develop ecological agriculture is $a_{i} \sum_{j=1}^{19} c_{ij}$ and $a_{1} \sum_{j=1}^{19} c_{2j}$ for developed and underdeveloped regions, respectively.

Let p_{i} be the unit sales price of ecological products in region i and let L_{i} be the per acre profit of ecological products in region i, then

$$L_{i} = p_{i}a_{i} - a_{i} \sum_{j=1}^{19} c_{ij}, (i = 1, 2)$$ (1)
Let \(c_{j} \) be the unit cost of \(j^{th} \) \((j=10...19) \) factor in underdeveloped regions using O2O market model and let \(L_{3} \) be the per acre profit of ecological products in underdeveloped regions also using O2O market model, then

\[
L_{3} = p_{1}a_{2} - a_{2}\sum_{j=1}^{9}c_{2j} - a_{2}\sum_{j=10}^{19}c_{3j}
\]

(2)

By comparing the calculation results of \(L_{1}, L_{2} \) and \(L_{3} \), if \(L_{3} \) is higher than the other two, it justifies the method of developing large scale eco-agriculture in underdeveloped regions by taking advantages of their superior ecological environment and relatively low labor cost and marketing the eco-agricultural products to Jiaxing’s agricultural wholesale market by taking advantages of its established online and offline marketing system. It proves that O2O linked market model and mechanism can achieve the joint development of the first, second and third industrial chains of eco-agriculture in developed regions and underdeveloped regions.

5. Conclusions

By implementing O2O linked market model and mechanism in Jiaxing’s agricultural wholesale market and eco-agricultural product cultivation bases in underdeveloped regions, in three years, Jiaxing’s agricultural wholesale market can use the “Internet+ Modern Eco-agriculture O2O Platform” to help grow more than ten eco-agricultural product cultivation bases with annual production volume around 300,000 US dollars. In the end, many farmers in undeveloped regions will be benefited and leave poverty, and meanwhile, Jiaxing’s agricultural product wholesale market’s transformation and upgrade will be facilitated.

Acknowledgements

This project is funded by Public Welfare Technology Application in Rural Agriculture Project (LGN18G02000).

References